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Abstract

Purpose – This paper aims to present a general framework of the homotopy perturbation method
(HPM) for analytic treatment of fractional partial differential equations in fluid mechanics. The
fractional derivatives are described in the Caputo sense.
Design/methodology/approach – Numerical illustrations that include the fractional wave
equation, fractional Burgers equation, fractional KdV equation and fractional Klein-Gordon
equation are investigated to show the pertinent features of the technique.
Findings – HPM is a powerful and efficient technique in finding exact and approximate solutions for
fractional partial differential equations in fluid mechanics. The implementation of the noise terms, if
they exist, is a powerful tool to accelerate the convergence of the solution. The results so obtained
reinforce the conclusions made by many researchers that the efficiency of the HPM and related
phenomena gives it much wider applicability.
Originality/value – The essential idea of this method is to introduce a homotopy parameter, say p,
which takes values from 0 to 1. When p ¼ 0, the system of equations usually reduces to a sufficiently
simplied form, which normally admits a rather simple solution. As p is gradually increased to 1, the
system goes through a sequence of deformations, the solution for each of which is close to that at the
previous stage of deformation.
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1. Introduction
Fractional calculus has a long history. The idea appeared in a letter by Leibniz to
L’Hospital in 1695. However, for three centuries, the theory of fractional calculus was
restricted to the field of pure mathematics. In recent years, it has been found that
derivatives of non-integer order are very effective for the description of many physical
phenomena such as rheology, damping laws, diffusion process. These findings invoked
the growing interest of studies of the fractal calculus in various fields such as physics,
chemistry and engineering. Recent advances of fractional differential equations are
stimulated by new examples of applications which arise in fluid mechanics,
viscoelasticity, mathematical biology, electrochemistry and physics. For example, the
non-linear oscillation of earthquake can be modeled with fractional derivatives (He,
1998a), and the fluid-dynamic traffic model with fractional derivatives (He, 1999a) can
eliminate the deficiency arising from the assumption of continuum traffic flow. Based on
experimental data fractional partial differential equations for seepage flow in porous
media are suggested in He (1998b), and differential equations with fractional order have
recently proved to be valuable tools to the modeling of many physical phenomena
(Podlubny, 1999). Different fractional partial differential equations have been studied
and solved, the space-time fractional diffusion-wave equation (Al-Khaled and Momani,
2005; Mainardi et al., 2001; Hanyga, 2002), the fractional advection-dispersion equation
(Huang and Liu, 2005a, b), the fractional telegraph equation (Momani, 2005a), the
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fractional KdV equation (Momani, 2005b) and the linear inhomogeneous fractional
partial differential equations (Debnath and Bhatta, 2004).

Fractional differential equations have been caught much attention recently due to
exact description of non-linear phenomena, especially in fluid mechanics, e.g. nano-
hydrodynamics, where continuum assumption does not well, and fractional model can
be considered to be a best candidate. No analytical method was available before 1998
for such equations even for linear fractional differential equations. In 1998, the
variational iteration method was first proposed to solve fractional differential
equations with greatest success, see He (1998a). Following the above idea, Draganescu,
Momani, Odibat and Das applied the variational iteration method to more complex
fractional differential equations, showing effectiveness and accuracy of the used
method (Draganescu, 2006; Odibat and Momani, 2006; Das, 2008). In 2002 the Adomian
method was suggested to solve fractional differential equations, but many researchers
found it is very difficult to calculate the Adomian polynomial (Yusufo�gglu, 2007a).
Ghorbani and Saberi-Nadjafi (2007) and Ghorbani (2007) suggested a very simple
method for calculation the Adomian polynomial using the homotopy perturbation
method (HPM), and He polynomial should be used instead of Adomian polynomial. In
2007, Momani and Odibat (2007) applied the HPM to fractional differential equations
and revealed the HPM is an alternative analytical method for fractional differential
equations. A complete review is available on a review article (He, 2008a).

The objective of this paper is to extend the application of the HPM to obtain analytic
solutions to some fractional partial differential equations in fluid mechanics. These
equations include wave equations, Burgers equation, KdV equation and Klein-Gordon
equation. The HPM is a computational method that yields analytical solutions and has
certain advantages over standard numerical methods. It is free from rounding off errors
as it does not involve discretization, and does not require large computer obtained
memory or power. The method introduces the solution in the form of a convergent
fractional series with elegantly computable terms. The corresponding solutions of the
integer order equations are found to follow as special cases of those of fractional order
equations. Throughout this paper, fractional linear partial differential equations are
obtained from the corresponding integer-order equations by replacing the first-order or
the second-order time derivative by a fractional in the Caputo sense (Caputo, 1967) of
order �with 0 < � � 1 or 1 < � � 2.

The HPM was first proposed by the Chinese mathematician Ji-Huan He (He, 1999b,
2000, 2003, 2004, 2005a, b, 2006a). The essential idea of this method is to introduce a
homotopy parameter, say p, which takes values from 0 to 1. When p ¼ 0, the system of
equations usually reduces to a sufficiently simplied form, which normally admits a
rather simple solution. As p is gradually increased to 1, the system goes through
a sequence of deformations, the solution for each of which is close to that at the
previous stage of deformation. Eventually at p ¼ 1, the system takes the original form
of the equation and the final stage of deformation gives the desired solution. One of the
most remarkable features of the HPM is that usually just few perturbation terms are
sufficient for obtaining a reasonably accurate solution. Considerable research works
have been conducted recently in applying this method to a class of linear and non-
linear equations (Özi�s and Yıldırım, 2007a, b, c, d; Yıldırım and Özi�s, 2007; Shakeri and
Dehghan, 2007, 2008; Dehghan and Shakeri, 2007, 2008a, b, c, d; Saadatmandi et al.,
2008; Yusufo�gglu, 2007b, c; Chowdhury and Hashim, 2009a, b; Jafari and Momani, 2007;
Wang, 2007, 2008; Abdulaziz et al., 2009; Momani and Yıldırım, 2009). The interested
reader can see He (2006b, c, 2008b) for last development of HPM. This HPM will
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become a much more interesting method to solving non-linear differential equations in
science and engineering. We extend the method to solve fractional partial differential
equations in fluid mechanics.

2. Fractional calculus
We give some basic definitions and properties of the fractional calculus theory which
are used further in this paper.

Definition 2.1
A real function f ðxÞ; x > 0, is said to be in the space C�; � 2 R if there exists a real
number pð> �Þ, such that f ðxÞ ¼ xpf1ðxÞ, where f1ðxÞ 2 C½0;1Þ, and it is said to be in
the space Cm

� if f ðmÞ 2 C�;m 2 N .

Definition 2.2
The Riemann-Liouville fractional integral operator of order � � 0, of a function
f 2 C�; � � �1, is defined as:

J�f ðxÞ ¼ 1

�ð�Þ

ðx

0

ðx� tÞ��1f ðtÞdt; � > 0; x > 0;

J 0f ðxÞ ¼ f ðxÞ:

Properties of the operator J� can be found in Podlubny (1999), Miller and Ross (1993),
Samko et al. (2007) and Oldham and Spanier (1974), we mention only the following. For
f 2 C�; � � �1; �; � � 0 and � > �1:

J�J� ¼ J�þ�f ðxÞ; ð1Þ
J�J� ¼ J�J�f ðxÞ; ð2Þ

J�x� ¼ �ð� þ 1Þ
�ð�þ � þ 1Þ x

�þ�: ð3Þ

The Riemann-Liouville derivative has certain disadvantages when trying to model real
world phenomena with fractional differential equations. Therefore, we shall introduce a
modified fractional differential operator D� proposed by Caputo in his work on the
theory of viscoelasticity (Luchko and Gorneflo, 1998).

Definition 2.3
The fractional derivative f(x) in the Caputo sense is defined as:

D�f ðxÞ ¼ Jm��Dmf ðxÞ ¼ 1

�ðm� �Þ

ðx

0

ðx� tÞm���1f ðmÞðtÞdt; ð4Þ

for m� 1 < � � m;m 2 N ; x > 0; f 2 Cm
�1.

Also, we need here two of its basic properties.

Lemma 2.3.1 If m� 1 < � � m;m 2 N and f 2 Cm
� ; � � �1, then D�J�f ðxÞ ¼ f ðxÞ,

and,

J�D�f ðxÞ ¼ f ðxÞ �
Xm�1

k¼0

f ðkÞð0þÞ x
k

k!
; x > 0:

The Caputo fractional derivatives are considered here because they allow traditional
initial and boundary conditions to be included in the formulation of the problem. In this
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paper, we consider the fractional partial differential equations which arise in fluid
mechanics, and the fractional derivatives are taken in Caputo sense as follows.

Definition 2.4
For m to be the smallest integer that exceeds �, the Caputo time-fractional derivative
operator of order � > 0 is defined as:

D�
t uðx; tÞ ¼ @

�uðx; tÞ
@t�

¼

1

�ðm� �Þ

ðt

0

ðt � �Þm���1 @
muðx; �Þ
@tm

d�; for m� 1 < � < m

@muðx; tÞ
@tm

; for � ¼ m 2 N

8>>><
>>>:

: ð5Þ

For more information on the mathematical properties of fractional derivatives and
integrals, one can consult the mentioned references.

3. Basic ideas of HPM
To illustrate the basic idea of He’s HPM, consider the following general non-linear
differential equation:

AðuÞ � f ðrÞ ¼ 0; r 2 � ð6Þ
with boundary conditions,

Bðu; @u=@nÞ ¼ 0; r 2 � ð7Þ

where A is a general differential operator, B is a boundary operator, f(r) is a known
analytic function and � is the boundary of the domain �.

The operator A can, generally speaking, be divided into two parts L and N, where L
is linear, and N is non-linear, therefore Equation (6) can be written as:

LðuÞ þ NðuÞ � f ðrÞ ¼ 0: ð8Þ

By using homotopy perturbation technique, one can construct a homotopy
vðr; pÞ : �� ½0; 1� ! R which satisfies,

Hðv; pÞ ¼ ð1� pÞ½LðvÞ � Lðu0Þ� þ p½AðvÞ � f ðrÞ� ¼ 0; p 2 ½0; 1�; ð9aÞ

or

Hðv; pÞ ¼ LðvÞ � Lðu0Þ þ pLðu0Þ þ p½NðvÞ � f ðrÞ� ¼ 0 ð9bÞ

where p 2 ½0; 1� is an embedding parameter, and u0 is the initial approximation of
Equation (6) which satisfies the boundary conditions. Clearly, we have,

Hðv; 0Þ ¼ LðvÞ � Lðu0Þ ¼ 0 ð10Þ
Hðv; 1Þ ¼ AðvÞ � f ðrÞ ¼ 0 ð11Þ

the changing process of p from zero to unity is just that of v(r, p) changing from u0ðrÞ to
u(r). This is called deformation, and also, LðvÞ � Lðu0Þ and AðvÞ � f ðrÞ are called
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homotopic in topology. If, the embedding parameter p; ð0 � p � 1Þ is considered as
a ‘‘small parameter’’, applying the classical perturbation technique, we can
naturally assume that the solution of Equations (10) and (11) can be given as a power
series in p, i.e.,

v ¼ v0 þ pv1 þ p2v2 þ � � � ð12Þ

and setting p ¼ 1 results in the approximate solution of Equation (9) as:

u ¼ lim
p!1

v ¼ v0 þ v1 þ v2 þ � � � ð13Þ

The convergence of series Equation (13) has been proved by He in his paper (He, 2004).
It is worth to note that the major advantage of He’s HPM is that the perturbation
equation can be freely constructed in many ways (therefore is problem dependent) by
homotopy in topology and the initial approximation can also be freely selected.

4. Applications
Example 1
Consider the following one-dimensional linear inhomogeneous fractional wave
equation (Odibat and Momani, 2006):

@�u

@t�
þ @u

@x
¼ t1��

�ð2� �Þ sinðxÞ þ t cosðxÞ; t > 0; x 2 R; 0 < � � 1; ð14Þ

subject to the initial condition:

uðx; 0Þ ¼ 0: ð15Þ

To solve Equations (14) and (15) by HPM, we construct the following homotopy:

@�u

@t�
� @

�u0

@t�

� �
¼ p � @u

@x
þ t1��

�ð2� �Þ sinðxÞ þ t cosðxÞ � @
�u0

@t�

� �
; ð16Þ

Assume the solution of Equation (16) to be in the form:

u ¼ u0 þ pu1 þ p2u2 þ p3u3 þ � � � ð17Þ

Substituting Equation (17) into Equation (16) and collecting terms of the same power of
p give

p0 :
@�u0

@t�
� @

�u0

@t�
¼ 0; ð18Þ

p1 :
@�u1

@t�
¼ � @u0

@x
þ t1��

�ð2� �Þ sinðxÞ þ t cosðxÞ � @
�u0

@t�
; ð19Þ

p2 :
@�u2

@t�
¼ � @u1

@x
; ð20Þ

p3 :
@�u3

@t�
¼ � @u2

@x
; ð21Þ
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The given initial value admits the use of:

u0ðx; tÞ ¼ 0: ð22Þ

The solution reads:

u1ðx; tÞ ¼ t sinðxÞ þ t�þ1

�ð�þ 2Þ cosðxÞ; ð23Þ

u2ðx; tÞ ¼ �
t�þ1

�ð�þ 2Þ cosðxÞ þ t2�þ1

�ð2�þ 2Þ sinðxÞ; ð24Þ

u3ðx; tÞ ¼ �
t2�þ1

�ð2�þ 2Þ sinðxÞ � t3�þ1

�ð3�þ 2Þ cosðxÞ; ð25Þ

and so on, in this manner the rest of components of the homotopy perturbation series
can be obtained.

The solution of Equations (14) and (15) can be obtained by setting p ¼ 1 in
Equation (17):

u ¼ u0 þ u1 þ u2 þ u3 þ � � � ð26Þ

Thus, we have:

uðx; tÞ ¼ t sinðxÞ þ t�þ1

�ð�þ 2Þ cosðxÞ � t�þ1

�ð�þ 2Þ cosðxÞ þ t2�þ1

�ð2�þ 2Þ sinðxÞ

� t2�þ1

�ð2�þ 2Þ sinðxÞ � t3�þ1

�ð3�þ 2Þ cosðxÞ þ � � � :
ð27Þ

It is easily observed that the self-canceling ‘‘noise’’ terms appear between various
components. Canceling the noise terms and keeping the non-noise terms in Equation
(27) yield the exact solution of Equations (14) and (15) given by:

uðx; tÞ ¼ t sinðxÞ; ð28Þ

which is easily verified. It is worth noting that other noise terms between other
components of Equation (27) will be canceled, as the sixth terms, and the sum of these
‘‘noise’’ terms will vanish in the limit.

Example 2
In this example, we consider the one-dimensional linear inhomogeneous fractional
Burgers equation given by (Odibat and Momani, 2006):

@�u

@t�
þ @u

@x
� @

2u

@x2
¼ 2t2��

�ð3� �Þ þ 2x� 2; t > 0; x 2 R; 0 < � � 1; ð29Þ

subject to the initial condition,

uðx; 0Þ ¼ x2: ð30Þ
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To solve Equations (29) and (30) by HPM, we construct the following homotopy:

@�u

@t�
� @

�u0

@t�

� �
¼ p � @u

@x
þ @

2u

@x2
þ 2t2��

�ð3� �Þ þ 2x� 2� @
�u0

@t�

� �
ð31Þ

Substituting Equation (17) into Equation (31) and collecting terms of the same power of
p give:

p0 :
@�u0

@t�
� @

�u0

@t�
¼ 0; ð32Þ

p1 :
@�u1

@t�
¼ � @u0

@x
þ @

2u0

@x2
þ 2t2��

�ð3� �Þ þ 2x� 2� @
�u0

@t�
; ð33Þ

p2 :
@�u2

@t�
¼ � @u1

@x
þ @

2u1

@x2
; ð34Þ

p3 :
@�u3

@t�
¼ � @u2

@x
þ @

2u2

@x2
: ð35Þ

The given initial value admits the use of:

u0ðx; tÞ ¼ x2: ð36Þ

The solution reads:

u1ðx; tÞ ¼ t2; ð37Þ
u2ðx; tÞ ¼ 0; ð38Þ
u3ðx; tÞ ¼ 0; ð39Þ

and so on, in this manner the rest of components of the homotopy perturbation series
can be obtained.

Thus, we have,
uðx; tÞ ¼ x2 þ t2; ð40Þ

which is the exact solution of the problem.

Example 3
We consider the one-dimensional linear inhomogeneous fractional Klein-Gordon
equation (Odibat and Momani, 2006):

@�u

@t�
� @

2u

@x2
þ u ¼ 6x3t þ ðx3 � 6xÞt3; t > 0; x 2 R; 1 < � � 2; ð41Þ

subject to the initial conditions,

uðx; 0Þ ¼ 0; utðx; 0Þ ¼ 0: ð42Þ

To solve Equations (41) and (42) by HPM, we construct the following homotopy:

@�u

@t�
� @

�u0

@t�

� �
¼ p

@2u

@x2
� uþ 6x3t þ ðx3 � 6xÞt3 � @

�u0

@t�

� �
: ð43Þ
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Substituting Equation (17) into Equation (43) and collecting terms of the same power of
p give:

p0 :
@�u0

@t�
� @

�u0

@t�
¼ 0 ð44Þ

p1 :
@�u1

@t�
¼ @

2u0

@x2
� u0 þ 6x3t þ ðx3 � 6xÞt3 � @

�u0

@t�
; ð45Þ

p2 :
@�u2

@t�
¼ @

2u1

@x2
� u1; ð46Þ

p3 :
@�u3

@t�
¼ @

2u2

@x2
� u2: ð47Þ

The given initial values admit the use of:

u0ðx; tÞ ¼ 0; ð48Þ
The solution reads:

u1ðx; tÞ ¼ 6x3 t�þ1

�ð�þ 2Þ þ ðx
3 � 6xÞ 6t�þ3

�ð�þ 4Þ ;

u2ðx; tÞ ¼ 36x
t2�þ1

�ð2�þ 2Þ þ 36x
t2�þ3

�ð2�þ 4Þ � 6x3 t2�þ1

�ð2�þ 2Þ

� ðx3 � 6xÞ 6t2�þ3

�ð2�þ 4Þ ;

ð50Þ

and so on, in this manner the rest of components of the homotopy perturbation series
can be obtained. Thus, we have:

uðx; tÞ ¼ 6x3 t�þ1

�ð�þ 2Þ þ ðx
3 � 6xÞ 6t�þ3

�ð�þ 4Þ þ 36x
t2�þ1

�ð2�þ 2Þ þ 36x
t2�þ3

�ð2�þ 4Þ

� 6x3 t2�þ1

�ð2�þ 2Þ � ðx
3 � 6xÞ 6t2�þ3

�ð2�þ 4Þ þ � � � :
ð51Þ

When � ¼ 2, we obtain the solution for the classical Klein-Gordon equation which is
given by:

uðx; tÞ ¼ x3t3 þ ðx3 � 6xÞ 6t5

�ð6Þ þ 36x
t5

�ð6Þ þ 36x
t7

�ð8Þ � 6x3 t5

�ð6Þ

� ðx3 � 6xÞ 6t7

�ð8Þ þ � � � :
ð52Þ

Canceling the noise terms and keeping the non-noise terms in Equation (52) yield the
exact solution of Equations (41) and (42), for this special case, given by,

uðx; tÞ ¼ x3t3; ð53Þ

which is easily verified.
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Example 4
We consider the time-fractional KdV equation (Momani, 2005a):

@�u

@t�
þ 6u

@u

@x
þ @

3u

@x3
¼ 0; t > 0; x 2 R; 0 < � � 1; ð54Þ

subject to the initial condition,

uðx; 0Þ ¼ 1

2
sec h2 1

2
x

� �
: ð55Þ

The exact solution, for the special case � ¼ 1, is given by:

uðx; tÞ ¼ 1

2
sec h2 1

2
ðx� tÞ

� �
: ð56Þ

To solve Equations (54) and (55) by HPM, we construct the following homotopy:

@�u

@t�
� @

�u0

@t�

� �
¼ p �6u

@u

@x
� @

3u

@x3
þ @

�u0

@t�

� �
; ð57Þ

Substituting Equation (17) into Equation (57) and collecting terms of the same power of
p give:

p0 :
@�u0

@t�
� @

�u0

@t�
¼ 0; ð58Þ

p1 :
@�u1

@t�
¼ �6u0

@u0

@x
� @

3u0

@x3
þ @

�u0

@t�
; ð59Þ

p2 :
@�u2

@t�
¼ �6u0

@u1

@x
� 6u1

@u0

@x
� @

3u1

@x3
; ð60Þ

p3 :
@�u3

@t�
¼ �6u0

@u2

@x
� 6u1

@u1

@x
� 6u2

@u0

@x
� @

3u2

@x3
: ð61Þ

The given initial values admit the use of:

u0ðx; tÞ ¼
1

2
sec h2 1

2
x

� �
: ð62Þ

The solution reads:

u1ðx; tÞ ¼ ð�6u0u00 � u0000 Þ
t�

�ð�þ 1Þ ;

u2ðx; tÞ ¼ ð�6u1u00 � 6u0u01 � u0001 Þ
t2�

�ð2�þ 1Þ ;

u3ðx; tÞ ¼ ð�6u2u00 � 6u1u01 � 6u0u02 � u0002 Þ
t3�

�ð3�þ 1Þ

and so on, in this manner the rest of components of the homotopy perturbation series
can be obtained. Thus, we have:



Homotopy
perturbation

method

195

uðx; tÞ ¼ f0ðxÞ þ f1ðxÞ
t�

�ð�þ 1Þ þ f2ðxÞ
t2�

�ð2�þ 1Þ þ f3ðxÞ
t3�

�ð3�þ 1Þ þ � � � ; ð63Þ

where,

f0ðxÞ ¼
1

2
sec h2 1

2
x

� �
;

f1ðxÞ ¼ �6f0f0 � f 0000 ;

f2ðxÞ ¼ �6f1f
0
0 � 6f0f 01 � f 0001 ;

f3ðxÞ ¼ �6f2f
0
0 � 6f1f 01 � 6f0f 02 � f 0002 :

For the special case � ¼ 1, we obtain:

uðx; tÞ ¼ 1

2
sec h2 1

2
x

� �
þ 1

2
sec h2 1

2
x

� �
tanh

1

2
x

� �
t

þ 1

2
sec h2 1

2
x

� �
� 3

4
sec h4 1

2
x

� �� �
t2

2
þ � � � :

ð64Þ

This series has the closed form:

uðx; tÞ ¼ 1

2
sec h2 1

2
ðx� tÞ

� �
ð65Þ

which is the exact solution of the problem.

Example 5
In this example, we consider the time-fractional Boussinesq-like equation (Odibat and
Momani, 2006):

@�u

@t�
þ @

2ðu2Þ
@x2

� @
4ðu2Þ
@x4

¼ 0; t > 0; x 2 R; 1 < � � 2; ð66Þ

subject to the initial conditions:

uðx; 0Þ ¼ 4

3
sinh2 1

4
x

� �
; utðx; 0Þ ¼ �

1

3
sinh

1

2
x

� �
: ð67Þ

To solve Equations (66) and (67) by HPM, we construct the following homotopy:

@�u

@t�
� @

�u0

@t�

� �
¼ p � @

2ðu2Þ
@x2

þ @
4ðu2Þ
@x4

þ @
�u0

@t�

� �
: ð68Þ
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Substituting Equation (17) into Equation (67) and collecting terms of the same power of
p give:

p0 :
@�u0

@t�
� @

�u0

@t�
¼ 0; ð69Þ

p1 :
@�u1

@t�
¼ � @

2ðu2
0Þ

@x2
þ @

4ðu2
0Þ

@x4
þ @

�u0

@t�
; ð70Þ

p2 :
@�u2

@t�
¼ � @

2ð2u0u1Þ
@x2

þ @
4ð2u0u1Þ
@x4

; ð71Þ

p3 :
@�u2

@t�
¼ � @

2ð2u0u2 þ u2
1Þ

@x2
þ @

4ð2u0u2 þ u2
1Þ

@x4
: ð72Þ

The given initial values admit the use of:

u0ðx; tÞ ¼
4

3
sinh2 1

4
x

� �
� 1

3
sinh

1

2
x

� �
t: ð73Þ

Solving Equation (66) recursively, as a result we obtain the following approximate
solution for the time-fractional Boussinesq-like Equation (66):

uðx; tÞ ¼ 4

3
sinh2 1

4
x

� �
� 1

3
sinh

1

2
x

� �
t þ 1

2:3
cosh

1

2
x

� �
t�

�ð�þ 1Þ

� 1

223
sinh

1

2
x

� �
t�þ1

�ð�þ 2Þ þ
1

23:3
cosh

1

2
x

� �
t2�

�ð2�þ 1Þ

� 1

243
sinh

1

2
x

� �
t2�þ1

�ð2�þ 2Þ þ
1

25:3
cosh

1

2
x

� �
t3�

�ð3�þ 1Þ

� 1

263
sinh

1

2
x

� �
t3�þ1

�ð3�þ 2Þ þ � � � :

ð74Þ

For the special case � ¼ 2, we obtain:

uðx; tÞ ¼ 2

3
cosh

1

2
x

� �
1þ t2

222!
þ t4

244!
þ . . .

� �
� 1

� �

� 2

3
sinh

1

2
x

� �
1

2
t þ t3

233!
þ t5

255!
þ . . .

� �
:

ð75Þ

This series has the closed form:

uðx; tÞ ¼ 4

3
sinh2 1

4
ðx� tÞ

� �
: ð76Þ

5. Conclusions
HPM is a powerful and efficient technique in finding exact and approximate solutions
for fractional partial differential equations in fluid mechanics. The implementation of
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the noise terms, if exist, is a powerful tool to accelerate the convergence of the solution.
The results so obtained reinforce the conclusions made by many researchers that the
efficiency of the HPM and related phenomena gives it much wider applicability. A
disadvantage of this new approach is to need an initial value. This technique cannot be
employed if the problem does not include initial and boundary conditions.
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